33 research outputs found

    Topological Aspects of Linear Dynamic Networks: Identifiability and Identification

    Get PDF

    Active Defense Analysis of Blockchain Forking through the Spatial-Temporal Lens

    Full text link
    Forking breaches the security and performance of blockchain as it is symptomatic of distributed consensus, spurring wide interest in analyzing and resolving it. The state-of-the-art works can be categorized into two kinds: experiment-based and model-based. However, the former falls short in exclusiveness since the derived observations are scenario-specific. Hence, it is problematic to abstractly reveal the crystal-clear forking laws. Besides, the models established in the latter are spatiality-free, which totally overlook the fact that forking is essentially an undesirable result under a given topology. Moreover, few of the ongoing studies have yielded to the active defense mechanisms but only recognized forking passively, which impedes forking prevention and cannot deter it at the source. In this paper, we fill the gap by carrying out the active defense analysis of blockchain forking from the spatial-temporal dimension. Our work is featured by the following two traits: 1) dual dimensions. We consider the spatiality of blockchain overlay network besides temporal characteristics, based on which, a spatial-temporal model for information propagation in blockchain is proposed; 2) active defense. We hint that shrinking the long-range link factor, which indicates the remote connection ability of a link, can cut down forking completely fundamentally. To the best of our knowledge, we are the first to inspect forking from the spatial-temporal perspective, so as to present countermeasures proactively. Solid theoretical derivations and extensive simulations are conducted to justify the validity and effectiveness of our analysis.Comment: 10 pages,10 figure

    Exploiting unmeasured disturbance signals in identifiability of linear dynamic networks with partial measurement and partial excitation

    Get PDF
    Identifiability conditions for networks of transfer functions require a sucientnumber of external excitation signals, which are typically measured reference signals. In this abstract, we introduce an equivalent network model structure to address the contribution of unmeasured noises to identifiability analysis in the setting with partial excitation and partial measurement. With this model structure, unmeasured disturbance signals can be exploited as excitation sources, which leads to less conservative identifiability conditions

    Spatial Crowdsourcing Task Allocation Scheme for Massive Data with Spatial Heterogeneity

    Full text link
    Spatial crowdsourcing (SC) engages large worker pools for location-based tasks, attracting growing research interest. However, prior SC task allocation approaches exhibit limitations in computational efficiency, balanced matching, and participation incentives. To address these challenges, we propose a graph-based allocation framework optimized for massive heterogeneous spatial data. The framework first clusters similar tasks and workers separately to reduce allocation scale. Next, it constructs novel non-crossing graph structures to model balanced adjacencies between unevenly distributed tasks and workers. Based on the graphs, a bidirectional worker-task matching scheme is designed to produce allocations optimized for mutual interests. Extensive experiments on real-world datasets analyze the performance under various parameter settings

    Proof of User Similarity: the Spatial Measurer of Blockchain

    Full text link
    Although proof of work (PoW) consensus dominates the current blockchain-based systems mostly, it has always been criticized for the uneconomic brute-force calculation. As alternatives, energy-conservation and energy-recycling mechanisms heaved in sight. In this paper, we propose proof of user similarity (PoUS), a distinct energy-recycling consensus mechanism, harnessing the valuable computing power to calculate the similarities of users, and enact the calculation results into the packing rule. However, the expensive calculation required in PoUS challenges miners in participating, and may induce plagiarism and lying risks. To resolve these issues, PoUS embraces the best-effort schema by allowing miners to compute partially. Besides, a voting mechanism based on the two-parties computation and Bayesian truth serum is proposed to guarantee privacy-preserved voting and truthful reports. Noticeably, PoUS distinguishes itself in recycling the computing power back to blockchain since it turns the resource wastage to facilitate refined cohort analysis of users, serving as the spatial measurer and enabling a searchable blockchain. We build a prototype of PoUS and compare its performance with PoW. The results show that PoUS outperforms PoW in achieving an average TPS improvement of 24.01% and an average confirmation latency reduction of 43.64%. Besides, PoUS functions well in mirroring the spatial information of users, with negligible computation time and communication cost.Comment: 12 pages,10 figure

    Allocation of Excitation Signals for Generic Identifiability of Linear Dynamic Networks

    Get PDF
    A recent research direction in data-driven modeling is the identification of dynamic networks, in which measured vertex signals are interconnected by dynamic edges represented by causal linear transfer functions. The major question addressed in this paper is where to allocate external excitation signals such that a network model set becomes generically identifiable when measuring all vertex signals. To tackle this synthesis problem, a novel graph structure, referred to as \textit{directed pseudotree}, is introduced, and the generic identifiability of a network model set can be featured by a set of disjoint directed pseudotrees that cover all the parameterized edges of an \textit{extended graph}, which includes the correlation structure of the process noises. Thereby, an algorithmic procedure is devised, aiming to decompose the extended graph into a minimal number of disjoint pseudotrees, whose roots then provide the appropriate locations for excitation signals. Furthermore, the proposed approach can be adapted using the notion of \textit{anti-pseudotrees} to solve a dual problem, that is to select a minimal number of measurement signals for generic identifiability of the overall network, under the assumption that all the vertices are excited

    Approximate Dynamic Programming for Constrained Piecewise Affine Systems with Stability and Safety Guarantees

    Full text link
    Infinite-horizon optimal control of constrained piecewise affine (PWA) systems has been approximately addressed by hybrid model predictive control (MPC), which, however, has computational limitations, both in offline design and online implementation. In this paper, we consider an alternative approach based on approximate dynamic programming (ADP), an important class of methods in reinforcement learning. We accommodate non-convex union-of-polyhedra state constraints and linear input constraints into ADP by designing PWA penalty functions. PWA function approximation is used, which allows for a mixed-integer encoding to implement ADP. The main advantage of the proposed ADP method is its online computational efficiency. Particularly, we propose two control policies, which lead to solving a smaller-scale mixed-integer linear program than conventional hybrid MPC, or a single convex quadratic program, depending on whether the policy is implicitly determined online or explicitly computed offline. We characterize the stability and safety properties of the closed-loop systems, as well as the sub-optimality of the proposed policies, by quantifying the approximation errors of value functions and policies. We also develop an offline mixed-integer linear programming-based method to certify the reliability of the proposed method. Simulation results on an inverted pendulum with elastic walls and on an adaptive cruise control problem validate the control performance in terms of constraint satisfaction and CPU time

    Privacy-aware Data Trading

    Get PDF
    The growing threat of personal data breach in data trading pinpoints an urgent need to develop countermeasures for preserving individual privacy. The state-of-the-art work either endows the data collector with the responsibility of data privacy or reports only a privacy-preserving version of the data. The basic assumption of the former approach that the data collector is trustworthy does not always hold true in reality, whereas the latter approach reduces the value of data. In this paper, we investigate the privacy leakage issue from the root source. Specifically, we take a fresh look to reverse the inferior position of the data provider by making her dominate the game with the collector to solve the dilemma in data trading. To that aim, we propose the noisy-sequentially zero-determinant (NSZD) strategies by tailoring the classical zero-determinant strategies, originally designed for the simultaneous-move game, to adapt to the noisy sequential game. NSZD strategies can empower the data provider to unilaterally set the expected payoff of the data collector or enforce a positive relationship between her and the data collector's expected payoffs. Both strategies can stimulate a rational data collector to behave honestly, boosting a healthy data trading market. Numerical simulations are used to examine the impacts of key parameters and the feasible region where the data provider can be an NSZD player. Finally, we prove that the data collector cannot employ NSZD to further dominate the data market for deteriorating privacy leakage.Comment: 10 pages, 11 figure
    corecore